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Symmorphic space grolrps af finite crystal lattices 
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Institute of Physics, A Mickiewicz University, M e j k i  48/49. 6 W 6 9  Poznah, Poland 

Received 9 lune 1992, in final form 22 February 1993 

Abstract The symmorphic space p u p  of a finite n-dimensional crystal lattice is studied and 
its factorization is presented. This lattice is determined by a direct product ofcyclic groups 
and then its uanslation, point and space groups are defined as modular images of mrrespondmg 
ones for a lanice of infinite extent A factorization of holohedries (of an infinite lattice) is used 
in order to present a symmorphic finite space group as a direct product. As an example, and 
as a very special case. a space group in the ease of the hypercubic lattice is sNdied and its 
irreducible representations are investigated The results obtlned suggest that for vectors lying 
on a surface of the first Brillouin zone (i.e. for which at least one coordinate is equal to 0 or 
i) an additional index describing their symmetry properties should be introduced. This enables 
us to make a more detailed classification of states (energy levels). On the other hand, finite 
symmorphid spice groups can te. used within, e.g.. the so-called finite-lattice approach. 

1. Introduction 

Adequate description of the ordering of constituent elements of matter in its different phases 
is one of the principal questions of condensed matter physics and it has been discussed 
by physicists, mathematicians and crystallographers for years. Development of a modem 
crystallography was started by Seitz (1934a,b, 1935a,b, 1936), who applied mathematical 
methods, in particular group theory, to the description of crystal symmetries. His works 
were based on results that had been obtained in the 19th century by, e.g., Barlow, Bravais, 
Fedorov, Gadolin, Haiiy, Schonflies and Sohnecke. On the other hand, there were many 
breakthroughs in algebra in these years owing to such famous mathematicians as Bumside, 
Frobenius, P6lya, Jordan, Schur, Weyl and Young. The beginning of the 20th century 
was also a period of rapid progress in condensed matter physics due to experimental 
and theoretical achievements (Bragg, Brillouin, Einstein, H e m " ,  von Laue and others). 
hoperties of crystal lattices in the n-dimensional Euclidean space were (and still are) very 
interesting for mathematicians and they have been frequently investigated for at least 50 
years (Wintgen 1941, Dade 1964). At first Seitz's results were applied to symmorphic 
space groups by Bouckaert et a1 (1936) and they gave the first description of compatibility 
relations. These pioneering works, a base of the contemporary theory of crystal symmetry, 
have been cited and reprinted in many books on crystallography, solid state physics and 
mathematics (cf e.g., Koster 1957, Koster el a1 1963, Bradley and Cracknell 1972, Meijer 
1964). 

On the other hand, Bom and von KiYmirn (1913) had introduced the periodic boundary 
conditions to determine specific heat and normal modes in crystals and this approach was 
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soon found to be fruitful in the description of irreducible representations of space groups. 
Nowadays, these conditions are used in computer calculations within the so-called $nile- 
lattice method (see, e.g., Bonner and Fisher 1964, Duxbury and Oitmaa 1983). 

Though the most important case in question is the three-dimensional infinite crystal 
lattice, mathematicians and crystallographers have investigated lattices in spaces of any 
dimension and over any field (or ring) of numbers (including finite ones). Moreover, 
it has been discovered that, on the one hand, there are a lot of systems with quasi- 
linear or quasi-two-dimensional periodicity (see, e.g., Walsted et a1 1970, Bonner 1978, 
Botet et a1 1983, Sdlyom and Ziman 1984) and, on the other hand, some structures 
can be described using point groups of n-dimensional crystal lattices with n > 3 (for 
incommensurate crystals like modulated crystals, intergrowth structures, quasi-crystals, see, 
e.g., Janner 1991 and references therein, Kramer and Neri 1984, de Wolff 1984). Recently, 
there has been a big interest in the (quasi-)two-dimensional lattices since the discovery of 
high-T, superconductors, due to their antiferromagnetic properties, which can be described 
introducing a 2~ crystal lattice (see, e.g., Huse 1988, van Himbergen and Silbey 1988, 
Gross et a1 1989, Bemuet a1 1992). One-dimensional (linear) models are also applied in 
investigations of superconductivity in organic crystals (Allender er a1 1974) or in modelling 
of biological processes (Tsetlin 1969). Symmetries of finite lattices seem to be good 
candidates for the description of fractal symmetries (e.g. in-line polymers, see Kuima 1991, 
1993 and references therein) and ‘floppy’ (non-rigid) crystals, in an analogy with ‘feasible’ 
symmetry operations for floppy molecules (see, e.g., Altmann 1977, Bunker 1979). The 
latter problem was briefly discussed in our previous work (Florek eta1 1988; see also Mucha 
1991). However, in this work we limit ourselves to ‘rigid‘ crystals, thus only the so-called 
modular images of crystal lattice and its symmetry groups will be discussed. 

Summarizing, this work has been motivated by three questions: (i) application of the 
finite-lattice method in solid state physics, (ii) very interesting physical phenomena which 
can be described by introducing a crystal lattice in n-dimensional space with n # 3, and 
(iii) better understanding of consequences of the Bom-vonl KivmCin periodic boundary 
conditions. A ‘cross section’ of these questions is an n-dimensional finite crystal lattice 
with its translational, point and space groups. In the first problem it is important to 
decompose a space of states into invariant subspaces labelled by imps of symmetry groups 
and, therefore, to decrease an eigenproblem dimension. The above-cited examples suggest 
that it is necessary to consider n-dimensional lattices (and their symmetries with irreducible 
representations) for any n. However, the case n = 3 is still the most important one. Some 
symmetry operations of the finite lattice can be interpreted as ‘feasible’ or fractal symmetries 
(this problem will not be discussed here) and, on the other hand, factorization of (finite) 
symmorphic space groups (presented below) gives us a new labelling scheme for symmetry 
points and lines in the (discrete) Brillouin zone. 

This aritcle starts with a brief presentation of finite lattices (section 2) and factorization 
of holohedries (section 3). In the next two sections we consider (modular) images of point 
and (symmorphic) space groups (sections 4 and 5). The obtained results are discussed 
in section 6, whereas an overall summary and a comparison with other approaches are 
presented in section 7. 

2. Finite crystal lattices 

An n-dimensional crystal lattice (from the mathematical point of view) is a set of points in 
the ndimensional Euclidean space E” given as 
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(1) 
n 

A" = a E E" a = no+ r ,  5 = 2 r i E i  7 c R'] [ I  i=l 

where a0 is an arbitrary chosen origin of the lattice and T Z Zn is its translation group, 
i.e. a set of vectors with integral coefficients si in a given crystal basis U consisting of n 
fundamental translations & I .  E Z ,  . . . , &,-the edges of the unit cell (see, e.g., Bradley and 
Cracknell 1972). Possible choices of the basis B (for the same czystal lattice) determines 
a group A u t 1  of all automorphisms of the translation group 1. This group is clearly a 
general linear group over a ring of integers GL(n, Z) (see, e.g., Dade 1964, 1965, Ascher 
and Janner 1965, Florek et a1 1988, Michel and Moznymas 1985, 1989). However, only 
a finite number of these transformations belong to the orthogonal group O(n, R), i.e. they 
leave invariant all distances and angles (with respect to a scalar product assumed in E"). In 
the case of a one-dimensional lattice it is easy to find these automorphisms since there are 
only two of them-GL(1, Z) = {l ,  -I}  O(1, R). Moreover, all lattices belong to the 
same crystal system. In higher dimensions the number of crystal systems increases rapidly. 
Mathematical aspects of n-dimensional crystallography have been studied and presented by 
many authors in monographs (e.g., Brown et al 1978, Schwarzenberger 1980, Mozrzymas 
1987) and original papers (see, e.g., Neubiiser et a1 1971, Schwanenberger 1972, 1974, 
Mozrzymas and Solecki 1975, Weigel et a1 1984, Senechal 1985). 

By analogy, an n-dimensional finite translation group T can be defined as a direct 
product of n cyclic groups ZN, 

and a finite crystal lattice is given as a set of 'points' labelled by elements of T .  A set of 
n vectors 

el = ( l , O ,  ... ,O,O) 
e2 = (0,1, ..., 0,O) 

e,-l = (O,O, ..., LO) 
e, = (O,O,. . . ,0,1) 

(3) 

is in one-to-one correspondence with any (n-dimensional) crystal basis 13 and will be 
hereafter referred to as the set of canonicalgenerators of T .  This is one possible realizations 
of the Bom-von K h i n  periodic boundary conditions. According to an idea proposed by 
Weyl (1952) in his book, the group of all automorphisms Aut T has to be analysed in order 
to obtain all essential mathematical features. It means that we are interested in all possible 
choices of generators of the translation group (2). It tums out that, even in such a simple case 
as the onedimensional lattice determined by the cyclic group ZN, there is a big difference 
between infinite and finite lattices. For example, the number of automorphisms in this case 
is given by the arithmetic Euler function y(N)+qual to number of integers less than and 
mutually prime with N-and strongly depends on the arithmetic structure of N (see Lulek 
1984, Florek and Lulek 1987 and references therein). This number varies from 1, for N = 1 
and 2, to p - 1 for a prime integer p .  On the other hand, for n-dimensional (n 2 2) infinite 
translation groups the group GL(n,  E )  always has an infinite number of elements (e.g. for 
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n = 2 it contains, among others, transformations in the form €1 3 el, EZ + kE1 i- €2, 

where k is any integer), whereas a number of automorphisms of a finite translation group is 
finite for any choice of identily periods NI, N I ,  . . . , N.. For example, when all the identity 
periods are equal to a prime number p then a direct product Z; 
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Z p  has 

n-l 
Aut ZF = n ( p "  - p') 

I=O 

automorphisms. For example, for p = 5, n = 3 one simply obtains that Aut Z: = 1 488 000. 
This number is much greater than an order of the largest three-dimensional point group 
(01, = 48) but it is divisible by 48, which suggests that Aut@ contains a subgroup 
isomorphic with 0, (it will be shown below). At this stage a problem of correspondence 
between infinite lattices and finite ones comes into question. So we are going to introduce 
modular images of translation, point and space groups. They define a modular image of a 
lattice itself. 

A modular image of an infinite translation group 7 (cf (1)) is determined by a mapping 
4 : 2- -+ T such that 

b(t)  = (TI mod N I ,  TZ mod Nz, . . . , T. mod N,) . 
According to this definition one caneasily obtain 

(4) 

4 ( E i )  = et. (5) 

Of course, this mapping says nothing about the geometrical properties of a considered 
(infinite) lattice. For example let us define, in a rather natural way, a notion of nearest 
neighbours in the case of finite lattice as a pair of nodes labelled by t and t' such that 
(t - t') or (t' - t)  is one of the canonical generators (3). It is a straightforward matter to 
show that this definition conesponds to the definition based on a scalar product (i.e. the 
one used in the case of a infinite lattice) if one considers the simple (hyper)cubic lattice. 
In other cases the proposed definition is too wide (e.g., for the monoclinic lattice) or too 
narrow as in the case of the hexagonal lattice. All such properties of an infinite lattice will 
be 'transformed' to its modular image, i.e. to a finite lattice, by the modular (homomorphic) 
image ofa point group Q in the automorphism group Aut T .  This problem will be discussed 
in section 4 after a short presentation of a factorization of holohedries, which then will be 
applied to (finite) symmorphic space groups (section 5). 

3. Factorization of holohedries 

Let A be a k-dimensional crystal lattice with the maximal point group in a given crystal 
system, i.e. its point group Q is the holosymmetric point group (or holohedry) of a crystal 
system. From m (identical) lattices A one can form a crystal lattice in km dimension-ch 
copy of A is embedded in a k-dimensional subspace and all these subspaces are mutually 
orthogonal. The holohedry of this new lattice, except for a direct product of m copies of 
Q ,  contains elements that permute sublattices. Therefore, this group can be written as a 
semi-direct product 
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where Em is the'group of all m! permutations of m elements (sublattices, in the considered 
case). Semi-direct products of this ~ f o m  are called wreath productsf (P6lya 1937, Kerber 
1971, Kerber and James 1981) and denoted Q 1 Em. Taking~into account different ks- 
dimensional lattices A, with the holohedries Q, and the multiplicities m, (1 < s < r )  
one can construct in the same way a crystal lattice in n = E, ksms dimensions with the 
holohedry given by a direct product 

Of course some Q, may be~isomorphic (identical), e.g. when lattices A, differ in lengths of 
vectors only. If ?; Zk* is a translation group of the lattice A$ then the translation group 
of the whole lattice can be~written as ~ 

where Ts 
can be written, respectively, as (see also table 1) 

Z'J"'~ is the translation group of lattices in the sth type. 
For exkmple, the holohedries of cubic, tetragonal and monoclinic 3D crystal systems 

On = c, 2 E3 

D4h 2 (c, 2 E d  @ (c, 2 xi) cs 1 (Ez @ xi) 

cu "= (C2 1 El) @ (C, 2 El). 

There are two special cases of the factorization (7): (i) the 'fully'-clinic lattice with 
the holohedry In 2 E,, where the group 1, is generated by the n-dimensional inversion in 
and (ii) the hypercubic lattice constructed from n identical one-dimensional lattices, which 
holohedry is given as the hyperoctahedralgroup W,, Z CzcE, (cf Young 1930, de Robinson 
1930, Springer 1974, Mayer 1974, 1975, Geissinger and Kinch 1978, Baake 1984, Florek 
et al 1988). A more detailed discussion of this factorization was presented in our previous 
work (Florek and Lulek 1991). In particular, holohedries Qi, which cannot be decomposed 
into a direct product of wreath products, were discussed. 

This factorization differs f", e.g., a presentation of point groups as semi-duect 
products (cf Altmann 1963ab, Mozrzymas 1977) and corresponds to a decomposition of 
an n-dimensional lattice into orthogonal sublattices (cf Eichler 1952, Kneser 1954, Dade 
1964, 1965). This gives us a very clear interpretation of a point group in the case of lattices 
with pairwise orthogonal fundamental translations E;. In such a case the holohedry can be 
written as a wreath product C, 2 &,, where E(n) is a Young subgroup of C. corresponding 
to the p k t i o n  (n) = (n l ,  n2, . . . , nr) .  This partition is determined by lengths of the vectors 
E ; .  i.e. ni denotes a number of the fundamental translations having length l ; .  For~example, 
when n = 4 there are 5 such lattices: orthogonal, tetragonal-orthogonal, ditetragonal, cubic 
and hypercubic determined by partitions (l,l,l,l), (Z,l,l), (2,2), (3,l) and (4), respectively 

t To be more precise, in general an active group of the semi-direct product (6) can be any suhgroup of the 
symmetric group. I f  it is equal (or isomorphic) to whole symmetric group, as in OUT case. a wreath product is 
sometimes called the complete monomial gmup (of degree m )  of Q (Spcht 1932) or ihe symmetry (of degree m) 
of Q (Ore 1942). 
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Table 1. Factorization of symmorphic finite space groups for 20 and 30 lattices (Xi  is omitted 
everywhere: the asterisk denotes a simple holohedry). 

Cwstal svstem Holohedrv 
Clinic 
Rectangular 
Hexagonal 

Triclinic 
Monoclinic 
Orthorhombic 
Tetragonal 
Rhombohedral 
Hexagonal 
Cubic 

square 

Space group 

c, * 
cs @ c, 
c6u * 
c, 1 E2 

(cf Wondratschek eta1 1971, Florek 1988a). It is easy to notice that with each direction the 
group of one-dimensional reflection (i.e. a reflection in an (n - 1)-dimensional hyperplane) 
C, is connected and these groups are permuted, when this is allowed by the orthogonality 
conditions. It should be stressed that within this approach holohedries of ‘fully’-clinic 
lattices, consisting of the identity and the inversion, are always non-decomposable (simple). 
Similarly, the holohedries C,,, and D3d (of ZD hexagonal and 3D rhombohedral lattices, 
respectively) cannot be decomposed. These are all simple holohedries in two- and three- 
dimensional spaces. In four dimensions there are 15 simple holohedries except for the I, 
group-the holohedry of hexaclinic lattice. 

4. Modular images of point groups 

It was briefly discussed in the previous sections that the group (2), determining a finite 
crystal, has the automorphism group Aut T ,  which algebraic structure depends on arithmetic 
structure of integers N I .  The investigation of this group is a very interesting problem of both 
group and number theory but it esceeds the scope of our work. We are only interested in 
these automorphisms, which can be treated as images of elements of a considered holohedry, 
though it is very interesting to find a physical interpretation of the others. Some predictions 
can be found in Florek et al 1988, Mucha 1991, Kutma 1991, 1993. 

It follows from the factorization (7) that a subspace containing lattices only in the sth 
type is invariant under any element of the holosymmetric group. Therefore, only one factor 
Q > Zm will be considered hereaftcr. Moreover, for the sake of simplicity, we assume that 
all identity periods Ni, i = 1,2,. . . , km = n are equal to N (so T = (Z$,)”’ = Zk). In this 
way none of the ‘axes’ is distinguished and all restrictions imposed on transformations @(q) 
have their ‘sources’ in a point group, which modular image will be investigated. However, 
it is possible to reduce these requirements (for details see Florek 1988a). 

A modular image of a given holohedry can be determined basing on the definition (4) 
of the translation group image. Let @ : Q + AutT be a group homomorphism. An 
automorphism @(q) is a modular image of q E Q if for each 5 E I (cf Dirl and Davis 
1993) 

@(4)(4(7)) = 4Mr)) .  (9) 
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If matrix elements of q in the lattice basis B are given by the relation 

n 

then for @(q) one obtains 

It is possible to choose the basis vectors &j E 7 in such a way that each permutation 
q E E,,, c Q transforms one fundamental translation into another. so qij  = 1 if q ( & j )  = -E; 
and 0 in the other cases. Since N > 1, we obtain the same formulae for @(q) and, 
therefore, @(Em) Em (but now its elements permute subgroups Z i  c Z i ) .  Therefore, 
it is sufficient to consider only a modular image of non-decomposable k-dimensional 
holosymmetric group Q-a passive group in the wreath product (6). 

First, let us consider the onedimensional lattice. There is only one crystal system with 
the holosymmetric point group Q = { E ,  x )  E C, I , .  On the other hand, Aut Zp, consists 
 of mappings 

.. 

q l ( f )  = I f  mod N 

such that I is mutually prime with N (the other homomorphisms q, are not automorphisms). 
Since x(&) = --E then, according to (9), @(x)(l) = N - 1, so @ ( x )  = qN-1 = q-1. It is 
clear that this image is non-hivial if N > 2 ( N  - 1 is always mutually prime with N ,  but 
for N = 2 we obtain @(x)  = q1 = @ ( E ) ) .  So in this way we have solved the problem of 
finding modular images for all holohedries of the form C, ? Zen) (cf the previous section). 
It is a very important results since, among others cases, they describe (hyper)cubic lattices, 
which are used in the finite lattice method as a rule. 

It follows from the above considerations that, in general, a modular image of Q is 
faithful if N is greater than max(9;j) - min(qij), where maximum and minimum are taken 
over all pairs 1 < i ,  j < k and for all 4 E Q (in this way different matrix elements qij 

have different ‘images’ q;j mod N so 0 is an isomorphism).  it is a straightforward matter 
to show that in this case @(q)(ei) is a generator of Z i  (the largest common divisor of 
integers qlj ,  q z j ,  . . . , q k j  is equd to 1, since this cohmn-as a vector in I@-generates a 
group isomorphic with Z). In the most important cases (k = 1,2,3) integers qi j are always 
0 and il (cf Bradley and Cracknell 1972, table 3.2), so it suffices to assume N > 2 (the 
case N = 2 should be considered separately; see, e.g., Mucha 1991). Wondratschek et al 
(1971) presented matrices of generators of 4D holohedries and, again, all entries are equal 
to =!=I or 0. It is easy (but tedious) to check that it is true for all elements of point groups. 

It is worthwhile to note that each holohedry contains the k-dimensional inversion 
ik E I ,  c Q ,  which modular image can be interpreted as a simultaneous action of all 
q N - I ,  J = 1,2. ..., k, i.e. U) . 

@ ( i k ) ( f l .  f 2 , .  . . , t k )  = (-f,, - t 2 , .  . . , - I d .  

Since ik commutes with any element of Q then this group can written as a direct product 

Q = Q ’ @ I k  (12) 
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where Q' is isomorphic to a quotient group Q/h. For example, C,, Z C,, @ CZ ( I 2  = Cz) 
and D3d 2 C3" @ Ci. This additional factorization of a holohedry is, of course, transformed 
to its modular image. 

Example. The holohedry of a two-dimensional hexagonal lattice is the group Csu 
generated by two reflections CI and g. In the lattice basis B = (&I = 1,Ol. 62 = -4, -.b/Zl} 

W Florek and T Lulek 

we have 

. I = (  1 -1 ) u z = ( '  0 ) .  0 -1 1 -1 

Therefore, for the canonical generators of T = Z;, N 2, we obtain 

O(Ul)(l, 0) = (1,O) @(Cl)(O, 1) = (-1, -1) 

@(uz)(1,0)=(1,1) O(uz)(0,1)=(0,-1). 

One can easily find images of the other elements 4 E &. 

5. Symmorphic finite space groups 

A modular image of a symmorphic space group is simply a semi-direct product of the 
translation group T = Zim and the modular image of a point group considered in the 
previous section (we again take into account only one factor from (7) given as a wreath 
product Q z Em). It should be stated here that our considerations can be generalized at 
least in two ways: (i) consideration of non-symmorphic groups and their modular images; 
(ii) investigation of a whole group AutT and its extensions by T (including, as the 
most important case, a holomorph HolT := TUAutT). In the first case we meet a 
problem of determining all extensions of O(Q)  by T for all non-trivial factor systems 
w : O(Q) x O(Q) + T. Please note that, in general, it is impossible to introduce 'rational' 
translations in the case of a finite translation goup, as is usually done for I = Z". This 
question has been partially discussed by Dirl and Davis (1993) and Florek el al (1993). In 
the second case, we come back to the problem of investigation and interpretation of non- 
orthogonal transformations (e.g. fractal symmetries, cf Kuhna 1991, 1993). In this work 
we are interested only in finite symmorphic space groups corresponding to infinite ones, so 
only a semi-direct product T 0 O(Q) is considered. 

Let us start again from the one-dimensional case (i.e. km = 1). The translation group is 
the cyclic grogp Z ~ J  and O(Q) = {?I ,  q- , )  2 C, (for N z 2). Therefore, the symmorphic 
finite space group in this case is simply given as a semi-direct product 

S = Z,N OC, Z C,N" 2 D N .  (13) 

More detailed discussion of one-dimensional lattices with the Bom-von K&"I periodic 
conditions are presented in the previous works of the authors (Lulek 1984, Florek and Lulek 
1987, Florek 19SSb). where some applications were presented, too. 

In a general case (n = km) a symmorphic finite space group can be written as 

S = ( d  N) m (@(e) 2 Em). (14) 
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An action of O(Q) /Cm on Z$’ is described in the previous section. It is a straightfomard 
matter to show that the above semi-direct product is isomorphic to a wreath product (see, 
e.g., Florek 1988a pp 169-71) . 

S = (Zh OO(Q)) 1 E,. 

Fork = 1, i.e. if we consider m copies of a one-dimensional lattice, what corresponds to 
the (hyper)cubic lattice, we immediately obtain 

S CN” 2 & (16) 

so in this case the space group is the symmetry (of order m) of CN”. Since, according to 
(12). Q can be written as a direct product Q’@ I,, then from (15) it follows that 

S = (Zk 0 (O(Q’)  @ I t ) )  t E,. (17) 

In the special case Q’ E Ek (it is hue, e.g., for the 3D rhombohedral lattice-+, 2 &) 
we obtain 

s = ((z; zt) I,) / e, E ((zN 2 et) ofk) > C, (18) 

since the inversion commutes with each element q‘ E Q and i k  acts only on translations 
t E Zb9 but not on U E & ,  i.e. 

i k ( ( t l ? . . : r t k ) . u )  =((-tl, . . . ,-fk),c) 

For example, in the case of the rhombohedral lattice one obtains the symmorphic space 
group as a semi-direct product of a generalized symmetry group and the inversion group; 
that is to say 

s = (ZN ! &)oci. (19) 

A passive group of the semi-direct product ZN 2 is the generalized symmehy group (see, 
e.g., Kerber 1971). These groups were investigated by Osima (1954, 1956), so we do not 
present them here. 

Complete monomial groups CN“ 1 C ,  f o r m  = 2,3 were studied by Florek (1988a). It 
is important to underline that: (i) for N = 2 there are not any non-trivial automorphisms, 
so S = Zz 1 E, = W, (see Mucha 1991) and (ii) properties of groups S, written as a 
wreath product (16). depend on parity of N and the cases (a) N odd, (b) N even, have to 
be investigated separately. Some results are presented in the next section. 

6. Results for two- and three-dimensional lattices. The symmetry of the group C N ~  

The considerations presented above enable us to write symmorphic finite space groups as 
direct products of wreath products, which basis groups are semi-direct products Z i  U Q. 
Moreover, it is sufficient to consider such semidirect produck only for non-decomposable 
(simple) holohedries Q. There are 1, 2, 2 and 16 such holohedries for k = 1.2.3 and 4, 
respectively (see Florek 1988a, Florek and Lulek 1991). For each k one of these groups is the 
group I k  generated by the kdimensional inversion i t ,  which corresponds to the ‘fully’-clinic 
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lattice (clinic, triclinic and hexaclinic for k = 2,3,4). The others, fork = 2,3, are C6“ and 
D,d. respectively. In table 1 factorization of symmorphic finite space groups is presented 
for n = 2,3 according to the formulae derived in the previous section (NI = N2 = N3 > 2 
is assumed in each case). More detailed discussion of these results has been presented 
elsewhere (Florek 1988a, see also Florek and Lulek 1991). The symmetry groups of CN“ of 
order m = 2.3 (square and cubic lattices, respectively; k = 1, n = m) are very interesting 
due to their possible applications in the finite-lattice method calculations. Therefore, we are 
going to present their properties below. The results have been obtained applying methods 
for investigations of wreath products (see, e.g., Kerber 1971). 

A number of irreducible representations (and classes of conjugated elements, too) of 
C N ~  1 Em for m = 2,3 is given by the following formulae (for details see Kerber 1971, 
Florek 1988a): 

(N + 3KN + 9)/8 m = 2 Nodd 

(N + 6)(N + 12)/8 m = 2 Neven 

(N + 3 ) ( N  +5)(N + 19)/48 m = 3  Nodd 

(N + 6)(N + 8)(N + 22)/48 m = 3 Neven . 

For example, for the square lattice 4 x 4 the space group D.+” 1 has 128 elements in 
20 classes, so there are also 20 irreducible representations (irreps), which may be used as 
‘quantum’ numbers to label eigenspaces of a considered Hamiltonian. These irreps can be 
obtained by the induction procedure from the imps of C;”, i.e. from products of m irreps 
of C N ~ .  The latter ones will be denoted by r k  with k = O+, 0-, 1,2,. . . , p ,  N/2+, N/2- ,  
where p = (N - 1)/2 for N odd or p = N / 2  - 1 for N even denotes a number of two- 
dimensional irreps. The others are one-dimensional, but these labelled by N/2 occur only 
for N even (and this case will be considered hereafter; when N is odd a border of the first 
Brillouin zone ‘disappears’). The -/+ symbol says whether or not the basis vector changes 
its sign under an action of the reflection z = I ) - 1 .  Of course, the reduction CN” J, ZN gives 

whereas the reduction CN” J, C, yields 

where &(I, denotes the symmetric (antisymmetric, respectively) irrep of C,. The two 
possible decompositions of rc for 1 ,< k < p correspond to two possible bases in the 
subspace labelled by rk. In the first case the basis is complex whereas in the second it is 
real. Of course, in both cases states labelled by r k  have the same energy. On the contrary, 
energy levels labelled by k = 0, N / 2  can split into symmetric and antisymmetric pMs (with 
different energies, in general). 

The standard induction procedure starts from the irreps of a translation group Z;, where 
apoint group is the hyperoctahedral group W, = C,I&,. A representation domain, identical 
with the basic domain when the isogonal group of a space group is the holosymmetric 
point group, contains vectors IC = ( k l ,  kz, . . . , k,) from the first Brillouin zone, for which 
0 < kl < kz ,< . . . < k, < $ q d  a representative of each star can be chosen to lie in 
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this area Within the approach presented in this work labels of the irrep are always non- 
negativ-it is caused by inclusion of reflections K 3 I)-, into an invariant subgroup Cgu- 
therefore, we consider only a part of the Brillouin zone containing vectors with non-negative 
coordinates. However, each point (and some lines, planes etc) of symmehy has at least one 
coordinate equal 0 or N / 2 ,  so it is split into a number of different (maybe equivalent) irreps 
 of C;" (cf (20)). For example, the centre of the Brillouin zone is labelled by the vector 
(0, 0, . . . , 0) and corresponds to the unit irrep of Z;. Considering the group CFU ones 
obtain Zm irreps with k = Oh (the unit one is, of course, labelled by (O+, Of, . . . , Of)). 
Under an action of Em they can be divided into m f 1 orbits (stars) Or; the lth orbit 
contains irreps, which are products of m - 1 irreps ro+ and 1 irreps ro-. It should be 
stressed that a general point (and some lines, planes etc), i.e. the one labelled by ]E with 
different coordinates 0 # ki # N / 2 ,  does not change its meaning-it is labelled now by 
m different two-dimensional irreps rk. Of course, it is possible when m p. In this 
way, points (lines etc) of symmetry receive an additional index describing their symmetry 
properties under an action of reflections R for these directions for which ki = 0 or N/2 
It is important in many physical applications. For example, we know that the ground state 
of the Heisenberg antiferromagnet is non-degenerate (Marshall 1955), so it belongs to a 
subspace labelled by a one-dimensional irrep. Considering only a translation group we do 
not obtain any hints-all irreps are one-dimensional. On the other hand, introducing the 
C;" group we find that this ground state has to be labelled by a point of symmetry (all 
coordinates have to be 0 or N / 2 ) ,  which is not so surprising. However, when one stops 
at this stage4.e. when one does not take into account a whole space group-then in the 
first case there are m + 1 possible labels of one-dimensional invariant subspaces (labelled 
by a number of coordinates equal to i), whereas in the second case this number is equal to 

distributions of numbers 0 and N / 2  and signs f. Of course, when we include an active 
group, i.e. the hyperoctahedral group W, in the first case and the symmetric group Em 
in the second one, all results (imps with character tables) have to be reproduced. For 
example, the number of one-dimensional irreps is always equal to 8 (4 for m = 1). but 
this result is obtained in two different ways. In the first case we have two points, say 
r = (O,O, . . . ,O) and R = ( f ,  f ,  . . . , $), with little CO-groups equal to a point group (cf 
Bradley and Cracknell 1972, table 3.6) and the hyperoctahedral group, as a wreath product 
C, z Em', has 4 (2  for m = 1) one-dimensional irreps. Therefore, the induction procedure 
gives 2 x 4 = 8 (2 x 2 for m = 1) one-dimensional irreps. Within the approach discussed 
here we have 4 irreps with a little CO-group E,: (Of, O+, . . . , O+), (0-, 0-, . . . ,O-), 
(+N+, 4 N f . .  . ., fN+) .  ( $ N - ,  $ N - ,  . . . , $ N - )  and the symmetric group has two one- 
dimensional irreps (1 for m = 1). so the results of induction is the same as above. In table 2 
we present a correspondence between points, lines and planes of symmetry (cf Bradley and 
Cracknell 1972) with representatives of stars (orbits) of C;" irreps for m = 3, i.e. for 
simple cubic lattice. In table 3 we compare different notions of space group irreps for 
k = (0, 0, 0)-they are equivalent to Wj = Oh irreps. We will discuss obtained formulae 
and tables in the next section. 

C L o ( m  - I  + 1)(1+ 1)  = (mj -t 6m 5 + 1 Im + 6)/6, which corresponds to non-equivalent 

7. Conclusions and h a 1  remarks 

The factorization of a space group presented and discussed in this work gives us an 
intermediate step in the construction of space groups imps. In the standard approach one 
starts from Z; and in the next step (by the induction procedure) reaches a space group. This 



2164 W Florek and T Lulek 

Table 2. Comparison of vector stars with orbifs of CiV  itreps (0 < II < p < y < 1: only 
labels (a. b,c)  of imps in aproduct To @ r b  @ T, are given, 0 < a < b c c c ; N ,  s. I = *, 
s E! -s). 

Paint of symmetry h e p  of CQ, Little c o - ~ o u p  

Label Coordinates Dimension Label 

‘way’ is now divided into four steps: (i) from Z i  to Z$ 0 Q (or, more precisely, @(e)), 
i.e. to a space group Sk of a k-dimensional lattice with a non-decomposable holohedry Q; 
(ii) from S, to its mth power Sr, when this type of lattice can be found m times in a 
decomposition of an n-dimensional crystal lattice; (iii) from Sr to a semi-direct product 
S;I 0 &-possible permutations of identical lattices are included; (iv) the simplest step-a 
construction and consideration of a direct product of all groups obtained in the previous 
steps (sometimes, like for hypercubic lattices, there is only one factor in the decomposition 
(7). When three-dimensional space groups are in question, then it suffices to consider (in 
the first step) the following groups: CNv for k = 1, Zk 0 Cz and Z; 0 C,, for k = 2, 
Z i  U Ci and Z i  U D3d for k = 3 (cf table 1 and (19)). In the case of four-dimensional 
lattices one also has to include 16 non-decomposable 4D holohedries. Considering a direct 
product of m identical groups Sk (like CNJ we obtain a base for investigations of all space 
groups in the form Sk t Xcm,  (cf sktion 3; fork = 1 one obtains a ‘family’ of lattices with 
orthogonal basis vectors) and provides us with additional indices for irreps obtained in the 
previous step (like the rt sign in the considered example of hypercubic lattices). The last 
two steps reproduce in a simple way results obtained within the standard approach. It has 
be underlined that steps (ii) and (iii) can be performed as a single step when one exploits the 
structure of wreath products. The above considerations suggest that groups Sk (like C N ~ )  
are the basic constituents of every space group in any dimension. 

The modular image of an infinite lattice has been introduced in order to construct 
a formal connection between infinite lattices (embedded in the Euclidean space with a 
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Table 3. Different notions of the one-dimensional imps of W3 = Oh: (3) ((1’)) denotes the 
symmetric (antisymmetric, reswctivelv) irrep of (cf Bradley and Cracknell 1972 table 5.8 
for GL). 

Bradley and Cracknell (1972) RI Rf R3 R4 
Mulliken (1933) AZg ~ AI” 
Koster et 01 (1963) r: r: ri r; 
This work r& (3) r:+ @ (1)) r0)- @ (3) r:- (i3) 

scalar product defined) and finite ones which, in general, cannot be embedded in a vector 
space. Moreover, it tums out that finite lattices-without restrictions imposed by a scalar 
product-can describe other structures of condensed~ matter (e.g. ‘non-rigid’ crystals or 
fractal symmetries), but we have not considered these possibilities in this work. It should 
be also underlined that the Bom-von K h f i n  periodic conditions can be introduced in a 
different way. In our approach the edges of crystal lattices are identified (so the number of 
crystal nodes is finite). One can also consider a lattice of infinite extent but constructed from 
finite lattices containing NI N2 . . . Nm nodes (i.e. one assumes that all physical properties 
of a crystal in points 5 and r‘ = NI& + . . . + Nmcm are identical). For example, Dirl and 
Davis (1993) investigated finite lattices (and their symmetry groups) considering a quotient 
group Z3/(NIZ 8 NzZ i3 N3Z). Of course, this group is isomorphic with a direct product 
ZN, EI Z.N, 8 Z.N~, but such an approach allows a generalization of the Bom-von K h f i n  
conditions to investigations of all possible finite quotient groups 7/T, where T’ is an 
infinite group different from direct products of NiZ groups. The difference between these 
two approaches is similar to the difference between the reduced and repeated zone schemes 
in the reciprocal lattice considerations. 

From table 3 one can easily notice that the standard labelling scheme of irreps (AI, etc) 
differs from the one obtained when this group is treated as a wreath product Ci t Z3.~ The 
‘symmetq’ index-g or u-is replaced by O+ and 0-, respectively, but the indices 1 and 
2 describe global properties of an irrep rather than properties of its second (‘permutational’) 
pat. It is clear that 1 corresponds to the symmetric irrep, which can be constructed from 
two symmetric or two antisymmetric irreps, whereas A2 is a product of symmetric and 
antisymmetric irreps. The labelling scheme introduced gives at once results of irreps 
products, e.g. it is evident that (ri+ @ (I3)) EI (r$- 8 (3)) = r;- @ (I3) which ispot  
so clear in the notation Azg 8 Atu  = AI,. 
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