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Symmorphic space groups of finite crystal lattices

Wojciech Florekt and Tadeusz Lulek]
Institute of Physics, A Mickiewicz University, Matejki 48/49, 60-76% Poznart, Poland

7 Received 2 June 1992, in final form 22 February 1993

Abstract. The symmorphic space group of a finite n-dimensional crystal lattice is studied and
its factorization is presented. This lattice is determined by a direct product of cyclic groups
and then its translation, point and space groups are defined as modular images of cormesponding
ones for a lattice of infinite extent. A factorization of holohedries ¢of an infinite lattice) is used
in order to present 2 symmorphic finite space group as a direct product. As an example, and
as a very special case, a space group in the case of the hypercubic lattice is sdied and its
itreducible representations are investigated. The results obtained suggest that for vectors lying
on a sutface of the first Brillouin zone (i.e. for which at least one coordinate is equal to 9 or
%) an additional index describing their symmetry properties should be introduced. This enables
us to make a2 more detailed classification of states (energy levels). On the ather hand, finite
symmorphic space groups can be used within, e.g., the so-called finite-lattice approach.

1. Introduction

Adequate description of the ordering of constituent elements of matter in its different phases
is one of the principal questions of condensed matter physics and it has been discussed
by physicists, mathematicians and crystallographers for years. Development of a modern
crystallography was started by Seitz (1934ab, 1935a,b, 1936), who applied mathematical
methods, in particular group theory, to the description of crystal symmetries. His works
were based on results that had been obtained in the 19th century by, e.g., Barlow, Bravais,
Fedorov, Gadolin, Hailiy, Schénflies and Sohnecke. On the other hand, there were many
breakthroughs in algebra in these years owing to such famous mathematicians as Burnside,
Frobenius, Pélya, Jordan, Schur, Weyl and Young. The beginuning of the 20th century
was also a period of rapid progress in condensed matter physics due to experimental
and theoretical achievements (Bragg, Brillouin, Einstein, Hermann, von Laue and others).
Properties of crystal lattices in the n-dimensional Euclidean space were (and still are) very
interesting for mathematicians and they have been frequently investigated for at least 50
years (Wintgen 1941, Dade 1964). At first Seitz’s results were applied to symmorphic
space groups by Bouckaert et al (1936) and they gave the first description of compatibility
relations. These pioneering works, a base of the contemporary theory of crystal symmetry,
have been cited and reprinted in many books on crystallography, solid state physics and
mathematics (cf e.g., Koster 1957, Koster et a/ 1963, Bradley and Cracknell 1972, Meijer
1964).

On the other hand, Born and von Kdrm4n (1913) had introduced the periodic boundary
conditions to determine specific heat and normal modes in crystals and this approach was
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soon found to be fruitful in the description of irreducible representations of space groups.
Nowadays, these conditions are used in computer calculations within the so-called finite-
lattice method (see, e.g., Bonner and Fisher 1964, Duxbury and Oitmaa 1983).

Though the most important case in question is the three-dimensional infinite crystal
lattice, mathematicians and crystallographers have investigated lattices in spaces of any
dimension and over any field (or ring) of numbers (including finite ones). Moreover,
it has been discovered that, on the one hand, there are a ot of systems with quasi-
linear or quasi-two-dimensional periodicity (see, e.g., Walsted ef o/ 1970, Bonner 1978,
Botet ef al 1983, Sélyom and Ziman 1984) and, on the other hand, some structures
can be described using point groups of n-dimensional crystal lattices with n > 3 (for
incommensurate crystals like modulated crystals, intergrowth structures, quasi-crystals, see,
e.g., Janner 1991 and references therein, Kramer and Neri 1984, de Wolff 1984), Recently,
there has been a big interest in the (quasi-}two-dimensional lattices since the discovery of
high-T; superconductors, due to their antiferromagnetic properties, which can be described
introducing a 2D crystal lattice (see, e.g., Huse 1988, van Himbergen and Silbey 1988,
Gross et al 1989, Bernuet al 1992). One-dimensional (linear) models are also applied in
investigations of superconductivity in organic crystals (Allender et o/ 1974) or in modelling
of biological processes (Tsetlin 1969), Symmetries of finite lattices seem to be good
candidates for the description of fractal symmetries (e.g. in-line polymers, see KuZma 1991,
1993 and references therein) and ‘floppy” (non-rigid} crystals, in an analogy with ‘feasible’
symmetry operations for floppy molecules (see, e.g., Altmann 1977, Bunker 1979). The
Tatter problem was briefly discussed in our previous work (Florek et ol 1988; see also Mucha
1991). However, in this work we limit ourselves to ‘rigid’ crystals, thus only the so-calied
modular images of crystal lattice and its symmetry groups will be discussed.

Summarizing, this work has been motivated by three questions: (i) application of the
finite-lattice method in solid state physics, (ii) very interesting physical phenomena, which
can be described by introducing a crystal lattice in n-dimensional space with # 3= 3, and
(iii) better understanding of consequences of the Born—von.Kirmén periodic boundary
conditions. A ‘cross section’ of these questions is an n-dimensional finite crystal lattice
with its translational, point and space groups. In the first problem it is important to
decompose a space of states inio invariant subspaces labelled by irreps of symmetry groups
and, therefore, to decrease an eigenproblem dimension. The above-cited examples suggest
that it is necessary to consider z-dimensional lattices (and their symmetries with irreducible
Tepresentations) for any n. However, the case n =3 is siill the most important one. Some
symmetry operations of the finite lattice can be interpreted as ‘feasible’ or fractal symmetries
(this problem will not be discussed here) and, on the other hand, factorization of (finite)
symmoiphic space groups (presented below) gives us a new labelling scheme for symmeiry
points and lines in the (discrete) Brillouin zone.

This aritcle starts with a brief presentation of finite lattices (section 2) and factorization
of holohedries (section 3). In the next two sections we consider (modular) images of point
and (symmorphic) space groups (sections 4 and 5). The obtained results are discussed
in section 6, whereas an overall summary and a comparison with other approaches are
presented in section 7.

2. Finite crystal [attices

An n-dimensional crystal lattice (from the mathematical point of view) is a set of points in
the n-dimensional Euclidean space E" given as
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A"=lae]E”

no
d=ag+‘r,‘r=Z‘E;8;'ETC]Rn} (1)

i=1

where ap is an arbitrary chosen origin of the lattice and 7" = Z” is its translation group,
i.e. a set of vectors with integral coefficients 7; in a given crystal basis B consisting of n
fundamental iranslations £, &2, ..., g,—the edges of the unit cell (see, e.g., Bradley and
Cracknell 1972). Possible choices of the basis B (for the same crystal lattice) determnines
a group Aut7 of all automorphisms of the translation group 7. This group is clearly a
general linear group over a ring of integers GL(n, Z) (see, e.g., Dade 1964, 1965, Ascher
and Janner 1965, Florek et af 1988, Michel and Mozrzymas 1985, 1989). However, only
a finite number of these transformations helong to the orthogonal group O(n, R), i.e. they
leave invariant all distances and angles {with respect to a scalar product assumed in E®). In
the case of a one-dimensional lattice it is easy to find these automorphisms since there are
only two of them—GL(1,Z) = {1, —1} = O(1, k). Moreover, all lattices belong to the
same crystal system. In higher dimensions the number of crystal systems increases rapidly.
Mathematical aspects of n-dimensional crystallography have been studied and presented by
marny authors in monographs (e.g., Brown et al 1978, Schwarzenberger 1980, Mozizymas
1987} and original papers (see, e.g., Neubiiser ef al 1971, Schwarzenberger 1972, 1974,
Mozrzymas and Sclecki 1975, Weigel et af 1984, Senechal 1985).

By analogy, an r-dimensional finite translation group T can be defined as a direct
product of n cyclic groups Zy,

n
T=QQZy={t=(tts....0) | € Ly, Ny > 1,i = 1,2,..., 1} 2)
f=l )

and a finite crystal lattice is given as a set of ‘points’ labelled by elements of 7. A set of
1 vectors ' '

e1 =(1,0,...,0,0)
e2=(0,1,...,0,0)

: , : (3
e =(0,0,....1,0
e =(0,0,...,0,1)

is in _one-to-one correspondence with any (n-dimensional) crystal basis 55 and will be
hereafter referred to as the set of canonical generators of T. This is one possible realizations
of the Born—von Kdrman periodic boundary conditions. According to an idea proposed by
Weyl (1952) in his book, the group of all antomorphisms Aut 7 has to be analysed in order
to obtain all essential mathematical features, It means that we are interested in all possible
choices of generators of the translation group (2). It tumns out that, even in such a simple case
as the one-dimensional lattice determined by the cyclic group Zy, there is a big difference
between infinite and finite lattices. For example, the number of automorphisms in this case
is given by the arithmetic Euler function ¢(N}—equal to number of integers less than and
mutually prime with N—and strongly depends on the arithmetic structure of N (see Lulek
1984, Florek and Lulek 1987 and references therein). This number varies from 1, for N =1
and 2, to p—1 for a prime integer p. On the other hand, for n-dimensional (n > 2) infinite
translation groups the group GL{n, %) always has an infinite number of elements (e.g. for
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n = 2 it contains, among others, transformations in the form & — &, g2 — kg1 + &2,
where k is any integer), whereas a number of automorphisms of a finite translation group is
finite for any choice of identity periods N1, N2, ..., N,. For example, when 2ll the identity

periods are equal to a prime number p then a direct product Zj = 1 Z, has
n=1
AuZ; = []¢" ~ o)
=0

automorphisms. For example, for p = 5, n = 3 one simply obtains that Aut Z2 = 1 488 000.
This number is much greater than an order of the largest thres-dimensional point group
(On = 48) but it is divisible by 48, which suggests that AutZ3 contains a subgroup
isomorphic with O (it will be shown below). At this stage a problem of correspondence
between infinite lattices and finite ones comes into question. So we are going to introduce
modular images of translation, point and space groups. They define a modular image of a
lattice itself.

A maodular image of an infinite translation group 7 (¢f (1)) is determined by 2 mapping
¢ : T — T such that

${(1) = (7; mod N;, 72 mod Ny, ..., T, mod Nu). @)

According to this definition one can easily obtain
lf)(é',') =€. )

Of course, this mapping says nothing about the geometrical properties of a considered
(infinite) laitice. For example let us define, in a rather natural way, a notion of nearest
neighbours in the case of finite lattice as a pair of nodes labelled by ¢ and ¢’ such that
(& —t) or (# —t) is one of the canonical generators (3). It is a straightforward matter to
show that this definition corresponds to the definition based on a scalar product (i.e. the
ane used in the case of a infinite lattice) if one considers the simple (hyper)cubic lattice,
In other cases the proposed definition is too wide (e.g., for the monoclinic lattice) or too
narrow as in the case of the hexagonal lattice. Al such properties of an infinite lattice will
be ‘transformed’ to its modular image, i.e. to a finite lattice, by the modular (homomorphic)
image of a point group Q in the automorphism group Aut 7, This problem will be discussed
in section 4 after a short presentation of a factorization of holohedries, which then will be
applied to (finite) symmorphic space groups (section 5).

3. Factorization of holohedries

Let A be a k-dimensional crystal lattice with the maximal point group in a given crystal
system, i.e. its point group Q is the Aolosymmetric point group (or holohedry) of a crystal
system. From m (identical} lattices A one can form a crystal lattice in &m dimensions—each
copy of A is embedded in a k-dimensional subspace and all these subspaces are mutually
orthogonal. The holchedry of this new lattice, except for a direct product of m copies of
{, contains elements that permute sublattices. Therefore, this group can be written as a
semni-direct product

(@® 08 - OIS, ©)

m times
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where 33, is the group of all m! permutations of m elements (sublattices, in the considered
case). Semi-direct products of this form are called wreath productsi (Pélya 1937, Kerber
1971, Kerber and James 1981) and denoted Q : X,,. Taking into account different #;-
dimensional lattices A; with the holohedries Q; and the multiplicities m; {1 €< 5 £ r)
one can construct in the same way a crystal lattice in n = }__ksm; dimensions with the
holohedry given by a direct product

Q=Q) Qs 1 Z,. (7
s=1 ! ' .

Of course some Qs may be isomorphic (identical), e.g. when lattices A, differ in lengths of
vectors only. If 7, = Z* is a translation group of the lattice A, then the translation group
of the whole lattice can be written as

T-QRT=RQT. =2 . ®

s=1 j=1

where 7; = Z%™ is the translation group of lattices in the sth type.
For example, the holohedries of cubic, tetragonal and monoclinic 3D crystal systems
can be written, respectively, as (see also table 1)

Op=C13,
Dy 2 (G} RCIEN=EC(E@ )
Cop E(C TN R (C 1 2.

There are two special cases of the factorization (7): (i) the ‘fully’-clinic lattice with
the holohedry I, ¢ 5, where the group /. is generated by the n-dimensional inversion i,
and (if) the hypercubic lattice constracted from n identical one-dimensional lattices, which
holohedry is given as the hyperoctahedral group W, = C3t X, (cf Young 1930, de Robinson
1930, Springer 1974, Mayer 1974, 1975, Geissinger and Kinch 1978, Baake 1984, Florek
et af 1988). A more detailed discussion of this factorization was presented in our previous
work (Florek and Luiek 1991). In particular, holohedries {;, which cannot be decomposed
into a direct product of wreath products, were discussed.

This factorization differs from, e.g., a presentation of point groups as semi-direct
products (cf Altmann 1963a,b, Mozrzymas 1977) and corresp()nds' to a decomposition of
an n-dimensional lattice into orthogonal sublattices (cf Eichler 1952, Kneser 1954, Dade
1964, 1965). This gives us a very clear interpretation of a point group in the case of lattices
with pairwise orthogonal fundamental translations &;. In such a case the holohedry can be
written as a wreath product C; ¢ Zy,, where X, is a Young subgroup of X, cormresponding
to the partition (n) = (ny, #2. ..., 2,). This partition is determined by lengths of the vectors
&, 1.&, n; denotes & number of the fundamental franslations having length f;. For example,
when n = 4 there are 5 such lattices: orthogonal, tetragonal-orthogonal, ditetragonal, cubic

~and hypercubic determined by partitions (1,1,1,1), (2,1,1), (2,2), (3,1) and (4), respectively

t To be more precise, in gencral an active group of the semi-direct product (8) can be any subgroup of the
symmetric group. If it is equal (or isomorphic) to whole symmetric group, as in our case, a wreath product is
sometimes called the complete monomial group {of degree m) of @ (Specht 1932) or the symmetry (of degree m)
of O (Ore 1942), )
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Fable 1. Factorization of symmorphic finite space groups for 20 and 3D lattices (X is omitted
everywhere; the asterisk denotes a simple holohedry).

Crystal system Holohedry Space group

Clinic N, C" 23,06
Rectangular N, C:0C Cnz ® Cyy
Hexagonal Ny Cen * Z%,- OCsy

Square Ny Cei Chp 122

Triclinic T Ci* 23,0
Monoclinic Ty C20Cs (23, 0C) & Chy
Orthorhombic Ty C:sBC®C Chy ®Cnyp ® Ciyy
Tetragonal Iq {Ce1E)@Cs (Cny 1E2) @ Cyry
Rhombohedral | Capu®Cr ™ (Zy 12336
Hexagonal Tk ) Car ® Cs {Z%, 0Ce) @ Cw
Cubic Fe Cs15, Cat I3

(cf Wondratschek et ol 1971, Florek 1988a). It is easy to notice that with each direction the
group of one-dimensional reflection (i.e. a reflection in an (# — I)-dimensional hyperplane)
C; is connected and these groups are permuted, when this is allowed by the orthogonality
conditions. It should be stressed that within this approach holohedries of ‘fully’-clinic
lattices, consisting of the identity and the inversion, are always non-decomposable (simple}.
Similarly, the holohedries Cg,, and Ds; (of 2D hexagonal and 3D rhombohedral Iattices,
respectively) cannot be decomposed. These are all simple holohedries in two- and three-
dimensional spaces. In four dimensions there are 15 simple holohedries except for the [
group—the holohedry of hexaclinic lattice.

4. Modular images of point groups

It was briefly discussed in the previous sections that the group (2), determining a finite
crystal, has the automorphism group Aut T, which algebraic structure depends on arithmetic
structure of integers N;. The investigation of this group is a very interesting problem of both
group and number theory but it exceeds the scope of our work. We are only interested in
these automorphisms, which can be treated as images of elements of a considered holohedry,
though it is very interesting to find 2 physical interpretation of the others. Some predictions
can be found in Florek et af 1988, Mucha 1991, KuZma 1991, 1993,

It follows from the factorization (7) that a subspace containing lattices only in the sth
type is invariant under any element of the holosymmetric group. Therefore, only one factor
0 ¢ ,; will be considered hereafter. Moreover, for the sake of simplicity, we assume that
all identity periods N;, i = 1,2, ..., km = n are equal to N (so T = (Z%)" = Z},). In this
way none of the ‘axes’ is distinguished and all restrictions imposed on transformations ®(g)
have their ‘sources’ in a point group, which modular image will be investigated. However,
it is possible to reduce these requirements (for details see Florek 1988a).

A modular image of a given holohedry can be determined basing on the definition (4)
of the translation group image. Let ® : 0 — AutT be a group homomorphism. An

automorphism ®(g) is a modular image of ¢ € @ if for each T € T (cf Dirl and Davis
1993)

P(g) (@ (1)) = ¢lg(r)). ®
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If matrix elements of ¢ in the lattice basis B are given by the relation
n
qE) = qya  ayeL (10)
- i=l
then for &(g) one obtains

®(g)(e;) = ) _(g;; mod N)e; . ' (11

i=1

It is possible to choose the basis vectors &; € 7 in such a way that each permutation
g € I, C @ transforms one funrdamental translation into another, so g;; = 1 if g(8;) = &;
and 0 in the other cases. Since N > 1, we obtain the same formulae for ®(g) and,
therefore, ®(Zn) = ,, (but now its elements permute subgroups Z¥, c ZX*). Therefore,
“it is sufficient to consider only a modular image of non-decomposable k-dimensional
holosymmetric group O—a passive group in the wreath product (6).

First, let us consider the one-dimensional lattice. There is only one crystal system with
the holosymmetric point group @ = {E, &} = C; = ;. On the other hand, Aut Zy consists
_of mappings -

() =Ir mod N

such that / is mutually prime with N (the other homomorphisms #; are not automorphisms).
Since m(g) = —e then, according to (9), @YD =N —1,50 (@) =nn-1 =7n-4. tis
clear that this image is non-trivial if N > 2 (N — 1 is always mutually prime with N, but
for N = 2 we obtain &() = n; = $(E)). So in this way we have solved the problem of
finding modular images for all holohedries of the form C; t Ty (cf the previous section).
It is 2 very important results since, among others cases, they describe (hyper)cubic lattices,
which are used in the finite lattice method as a rule,

It follows from the above considerations that, in general, a modular image of @ is
faithful if N is greater than max{(g;;) — min(g;;), where maximum and minimum are taken
over all pairs 1 < i,j < & and for all g € @ (in this way different matrix elements gi;
have different ‘images’ ¢;; mod N so @ is an isomorphism). It is a straightforward matter
to show that in this case ®(g)(e;} is a generator of Z¥, (the largest common divisor of
integers g1;, g24. ..., gy is equal to 1, since this column—as a vector in R*—generates a
group isomorphic with Z). In the most important cases (£ = 1, 2, 3) integers q; j are always
0 and %1 (cf Bradley and Cracknell 1972, table 3.2), so it suffices to assume N > 2 (the
case N = 2 should be considered separately; see, e.g., Mucha 1991), Wondratschek et af
(1971) presented matrices of generators of 4D holohedries and, again, all entries are equal
to +1 or 0. It is easy (but tedious) to check that it is true for all elements of point groups.

1t is worthwhile to note that each holohedry contains the k-dimensional inversion
iy € Iy C @, which modular image can be interpreted as a simultaneous action of all

L i=12 ki

¢(fk)(f], 12,000y tf() = (_tls —, 0., '—tk) .
Since i{; commutes with any element of @ then this group can written as a direct product

=00l (12)
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where Q' is isomorphic 1o a quotient group O/1;. For example, Cg, = C3, @ C2 (2 = C3)
and D, = C3, ® C;. This additional factorization of a holohedry is, of course, transformed
to its modular image.

Example. The holohedry of a two-dimensional hexagonal lattice is the group Cgy
generated by two reflections o7 and ¢z, In the lattice basis B = {g1 =1,0|, 52 = "“'li’ V3720

we have
o (1 -1 {1 0
I=Vo0 -1 2=11 1)

Therefore, for the canonical generators of T = 72, N > 2, we obtain

P(o1)(1,0) = (1,0) Qo0 1) = (-1, 1)
Plo(1,00=(1,1) ®(02)(0, 1) = (0, -1).

One can easily find images of the other elements g € Cgy.

5. Symmorphic finite space groups

A modular image of a symmorphic space group is simply a semi-direct product of the
translation group T = Z&* and the modular image of a point group considered in the
previous section (we again take into account only one factor from (7) given as a wreath
product @ ? ). It should be stated here that our considerations can be generalized at
least in two ways: (i) consideration of non-symmorphic groups and their modular images;
(ii) investigation of a whole group AutT and its extensions by T (including, as the
most important case, a holomorph HolT = TDOAutT). In the first case we meet a
problem of determining all extensions of ®(Q) by T for all non-trivial factor systems
w: () x P(Q) — T. Please note that, in general, it is impossible to introduce ‘rational’
translations in the case of a finite translation group, as is usually done for 7 = Z". This
question has been partially discussed by Dirl and Davis (1993) and Florek et a/ (1993). In
the second case, we come back to the problem of investigation and interpretation of non-
orthogonal transformations (e.g. fractal symmetries, of Kufma 1991, 1993). In this work
we are interested only in finite symmeorphic space groups corresponding to infinite ones, so
only a semi-direct product T 0 ¢{Q) is considered.

Let us start again from the one-dimensional case (i.e. km = 1). The translation group is
the cyclic group Zy and ®(Q) = {n,n-1} = C; (for N > 2). Therefore, the symmorphic
finite space group in this case is simply given as a semi-direct product

S=ZNDC_;§CN93DN. (13)
More detailed discussion of one-dimensional lattices with the Born—von Kdrmén periodic

conditions are presented in the previous works of the authors (Lulek 1984, Florek and Lulek
1987, Florek 1988b), where some applications were presented, too.

In a general case (r = km) a symmorphic finite space group can be written as

S = (Z5Y'D(®(Q) 1 ). (14
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An action of ®(Q) ¢ T, on Z&" is described in the previous section. It is a straightforward
matter to show that the above semi-direct product is isomorphic to a wreath product (see,
e.g., Florek 1988a pp 169-71} . :

= (@4, 09(0)) T ‘_ @

For k = 1, i.e. if we consider m copies of a one-dimensional lattice, what corresponds to
the (hyper)cubic lattice, we immediately obtain

8§ =Cpny2Zn ' (16)

50 in this case the space group is the symmetry (of order m)} of Cy,. Since, according to
(12). O can be written as a direct product Q' ® I, then from (15) it follows that

= (Z O(@(Q) ® L)) 1 Ty . : an

In the special case @' = T, (it is true, e.g., for the 3D rhombohedral lattice—Cs, = Zs)
we obtain

= ((ZNOZHOI) L Zx & (En 1 E) O I) 1 B (18)

since the inversion commutes with each element ¢’ € @' and zk acts only on translations
teZ, butnot on o € Iy, ie.

ik((th '-"’tk)1 0') = (("'th ey _tk)va) .

For example, in the case of the rhombohedral lattice one obtains the symmorphic space
group as a semi-direct product of a generalized symmetry group and the inversion group,
that is to say

S=EN1E)0C;. ’ (19)

A passive group of the semi-direct product Zy 2 Iy, is the gereralized symmetry group (see,
e.g., Kerber 1971). These groups were investigated by Osima (1954, 1956), so we do not
present them here,

Complete monomial groups Cy, ¢ Xy for m = 2, 3 were studied by Florek (1988a). It
is important to underline that: (i) for N = 2 there are not any non-trivial antomorphisms,
s0 § = Zpt B, = W, (see Mucha 1991) and (ii) properties of groups S, written as a
wreath product (16), depend on parity of N and the cases (a) N odd, (b) N even, have to
be investigated separately. Some results are presented in the next section.

6. Results for two- and three-dimensional lattices. The symmetry of the group Chry

The considerations presented above enable us to write symmorphic finite space groups as
direct products of wreath products, which basis groups are semi-direct products Z& [ Q.
Moreover, it is sufficient to consider such semi-direct products only for non-decomposable
(simple) holohedries §. There are 1, 2, 2 and 16 such holohedries for £ = 1,2, 3 and 4,
respectively (see Florek 1988a, Florek and Lulek 1991). For each £ one of these groups is the
group I; generaied by the k-dimensional inversiot i, which corresponds to the “fully’-clinic
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lattice (clinic, triclinic and hexaclinic for £ = 2, 3, 4). The others, for k = 2, 3, are (g, and
D34, respectively. In table 1 factorization of symmorphic finite space groups is presented
for n = 2, 3 according to the formulae derived in the previous section (Ny = N2 =N; > 2
is assumed in each case). More detailed discussion of these results has been presented
elsewhere (Florek 1988a, see also Florek and Lulek 1991). The symmetry groups of Cy, of
order m = 2, 3 (square and cubic lattices, respectively; &k = 1, n = m) are very interesting
due to their possible applications in the finite-lattice method calculations, Therefore, we are
going to present their properties below. The results have been obtained applying methods
for investigations of wreath products (see, e.g., Kerber 1971).

A number of irreducible representations (and classes of conjugated elements, too) of
Cny 1 I for m = 2,3 is given by the following formulae (for details see Kerber 1971,
Florek 1988a);

(N +3){N+9)/8 m=2 Nodd
(N +6)(N +12)/8 m=2 Neven
(N +3)(N + 5N+ 19/48 m=3 Nodd
(N +6)(N + 8)(WV +22)/48 m=73 Neven.

For example, for the square lattice 4 x 4 the space group Di, 1 Zy has 128 elements in
20 classes, so there are also 20 irreducible representations (irreps), which may be used as
‘quantum’ numbers to label eigenspaces of a considered Hamiltonian. These irreps can be
obtained by the induction procedure from the irreps of C%,, i.e. from products of m irreps
of Cuy. The latter ones will be denoted by I'y, with k = 0+4,0—,1,2,..., p, N/2-, N/2—,
where p = (N — 1)/2 for N odd or p = N/2 — 1 for N even denotes 2 number of two-
dimensional irreps. The others are one-dimensional, but these labelled by N/2 occur only
for N even (and this case will be considered hereafter; when N is odd a border of the first
Brillouin zone ‘disappears’). The —/+ symbol says whether or not the basis vector changes
its sign under an action of the refiection » = n.;. Of course, the reduction Cy, | Zy gives

F0i=‘AO Pyjzj::AN/z F;;=A"®A'k fOI' k=1,2,...,p (20)
whereas the reduction Cy,, { C; yields

Fes =S Tio =& for k=0,1N
21
Te=Ey D & for k=1,2,...,p

where Hoy denotes the symmetric (antisymmetric, respectively) irep of C;. The two
possible decompositions of T, for 1 € & £ p comrespond to two possible bases in the
subspace labelled by I'x. In the first case the basis is complex whereas in the second it is
real. Of course, in both cases states labeiled by I'y have the same energy. On the contrary,
energy levels labelled by & = 0, N/2 can split into symmetric and antisymmetric parts (with
different energies, in general).

The standard induction procedure starts from the irreps of a translation group Z7, where
a point group is the hyperoctahedral group W,, = C1%,,. A representation domain, identical
with the basic domain when the isogonal group of 2 space group is the holosymmetric
point group, contains vectors k = (&1, &2, ..., &) from the first Brillouin zone, for which
Oh€sh< <€k € % and a representative of each star can be chosen to lie in
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this area. Within the approach presented in this work labels of the irrep are always non-
negative—it is caused by inclusion of reflections = = »_; into an invariant subgroup Cy,—
therefore, we consider only a part of the Brillouin zone containing vectors with non-negative
coordinates. However, each point (and some lines, planes etc) of symmetry has at least one
coordinate equal 0 or N /2, so it is split into a number of different (maybe equivalent) irreps
-of Cf, (cf (20)). For example, the centre of the Brillouin zone is labelied by the vector
(0,0,...,0) and corresponds to the unit irrep of Zj. Considering the group Cfj, ones
obtain 27 irreps with k = 0= (the unit one is, of course, labelled by (0+, 0+, ..., 0-+).
Under an action of %, they can be divided into m + 1 orbits (stars) Oy; the /th orbit
contains irreps, which are products of m — [ irreps ' and I irreps I'o—. It should be
stressed that a general point (and some lines, planes etc), i.e. the one labelled by & with
different coordinates 0 # %; s N/2, does not change its meaning—it is labelled now by
m different two-dimensional irreps I'y. Of course, it is possible when m 2 p. In this
way, points (lines etc) of symmetry receive an additional index describing their symmetry
properties under an action of reflections = for these directions for which & = 0 or N/2.
It is important in many physical applications. For example, we know that the ground state
of the Heisenberg antiferromagnet is non-degenerate (Marshall 1955), so it belongs to a
subspace labelled by a cne-dimensional irrep. Considering only a translation group we do
not obtain any hints—all irreps are one-dimensional. On the other hand, introducing the
CF, group we find that this ground state has to be labelled by a point of symmetry (all
coordinates have to be 0 or N/2), which is not so surprising. However, when one stops
at this stage—i.e. when one does not take into account 2 whole space group—then in the
first case there are m + 1 possible labels of one-dimensional invariant subspaces (labelled
by a number of coordinates equal to 1), whereas in the second case this number is equal to
Shom—I+ D+ 1) =m>+ 6m + 11m + 6)/6, which corresponds to non-equivalent
distributions of numbers 0 and N/2 and signs +. Of course, when we include an active
group, i.e. the hyperoctahedral group W, in the first case and the symmetric group I,
in the second one, all results (irreps with character tables) have to be reproduced. For
example, the number of one-dimensional irreps is always equal to § (4 for m = 1), but
this result is obtained in two different ways. In the first case we have two points, say
I'=(0,0,...,0) and R = (4, 3, ..., }), with little co-groups equal to a point group (cf
Bradley and Cracknell 1972, table 3.6) and the hyperoctahedral group, as & wreath product
C; 2 Z,, has 4 (2 for m = 1) one-dimensional irreps. Therefore, the induction procedure
gives 2 x 4 = 8 (2 x 2 for m = 1) one-dimensional irreps. Within the approach discussed
here we have 4 irreps with a little co-group Z,: O+, 0+,...,0+), (0—,0—,...,0=),
3N+, %N%—. - lN+’). (%N——, IN—,...,3N—-) and the symmetric group has two one-
dimensional irreps (1 for m = 1), so the results of induction is the same as above. In table 2
we present a correspondence between points, lines and planes of symmetry (cf Bradley and
Cracknell 1972) with representatives of stars (orbits) of C, irreps for m = 3, ie. for
simple cubic lattice. In table 3 we compare different notions of space group irreps for
k = (0,0, 0)—they are equivalent to W3 = Oy, irreps. We will discuss obtained formulae
and tables in the next section,

7. Conclusions and final remarks
The factorization of a space group presented and discussed in this work gives us an

intermediate step in the construction of space groups irreps. In the standard approach one
starts from Z7 and in the next step (by the induction procedure) reaches a space group. This
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Tahle 2. Comparison of vector stars with orhits of Cf,u imeps Q<< <y < %; only .
labels (a. b, ¢} of irreps in a product T, @ Tp ® Ty are given, 0 <a<b <c < %N, 5, 0=

5= —s).
Poiat of symmetry trrep of €3, Little co-group
Label Coordinates Dimension Label
r (000} 1 (05, 0s, 05) 3
(0s, 05, 05) Len
R (344 1 (3Ns, $Ns, §N5) s
(3Ns, N5, sND ;95
X (004} 1 (0s, Os, $N1) 2® 5
{0+.0—, ;Ns) TI®T1 9%
M 033 I (s, $Nt, INT) L@,
(05, N+, $N-) LI®TI8%n
ATR) (eoo) 8 (a.a,a} I3
A(CX) (00} 2 (0s, 05, a) eI
O+.0—, a) i@ ®%
2T M) (Oeeer) 4 (0s,a,a) 9
S(XR) (aerg) 4 (@2, 1Ns) 9%
Z(XM) (Oerd) 2 (05, a, §Nt) TI®LI®%
T(MR) (@i 2 (a. $Ns, {Ns) I,®%5
(@, iN+. 1N TI®L 8L
0(AXZ) (D) 4 (05, a, b} TIRTI®%
J(AAS) (cap) 8 (a.a,b) 2@ E
C(EAT) @pB) 8 (a.b. b) T1®L;
B(SZT) @pd) 4 (a, b, §Ns) LI®LIQn
General point (eBy) 8 (@ b.c I 5

‘way’ is now divided into four steps: (i) from Z%, to Z% O Q (or, more precisely, $(2)),
i.e. 10 a space group S; of a k-dimensional lattice with a non-decomposable holohedry ;
(ii} from S to its mth power S, when this type of lattice can be found m times in a
decomposition of an n-dimensional crystal lattice; (iii) from S to a semi-direct product
§¢ O T,—possible permutations of identical lattices are included; (iv) the simplest step—a
construction and consideration of a direct product of all groups obtained in the previous
steps (sometimes, like for hypercubic lattices, there is only one factor in the decomposition
(7). When three-dimensional space groups are in question, then it suffices to consider (in
the first step) the following groups: Cy, for k = 1, Z%,0C; and Z% O Cg, for k = 2,
73, 0C; and Z3, 0 D3y for k = 3 (cf table 1 and (19)). In the case of four-dimensional
lattices one also has to include 16 non-decomposable 4D holohedries. Considering a direct
product of m identical groups 8; (like Cy,) we obtain a base for investigations of all space
groups in the form $; ¢ By, (cf seéction 3; for k = 1 one obtains 2 ‘family’ of lattices with
orthogonal basis vectors) and provides us with additional indices for irreps obtained in the
previous step (like the == sign in the considered example of hypercubic lattices). The last
two steps reproduce in a simple way results obtained within the standard approach. It has
be underlined that steps (ii) and (iil) can be performed as a single step when one exploits the
structure of wreath products. The above considerations suggest that groups S; (like Cpy)
are the basic constituents of every space group in any dimension.

The modular image of an infinite lattice has been introduced in order to construct
a formal connection between infinite lattices {(embedded in the Euclidean space with a
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Table 3. Different notions of the one-dimensional irreps of W5 = O (3) ((1%)) denotes the
symmetric {(antisymmetric, respectively) irrep of I3 (¢f Bradley and Cracknell 1972, table 5.8

for Glg).
Bradley and Cracknell {1972) R, R . Ry Rq
Muliiken (1933) Atg " Agg Az At
Koster et af (1963) rf rf I v Ty
This work 3, ®3) r3, ®(1% 3. ®3) .M.ea)

scalar product defined) and finite ones which, in general, cannot be embedded in a vector
space. Moreover, it turns out that finite lattices—without restrictions imposed by a scalar
product—can describe other structures of condensed matter (e.g. ‘non-rigid® crystals or
fractal symmetries), but we have not considered these possibilities in this work. It should
be also underlined that the Born—von Kdrman periodic conditions c¢an be introduced in a
different way. In our approach the edges of crystal lattices are identified (so the number of
crystal nodes is finite). One can also consider a lattice of infinite extent but constructed from
finite lattices containing NyNa ... N, nodes (i.e. one assumes that all physical properties
of a crystal in points 7 and ©° = Nj& + - - + Np&, are identical). For example, Dirl and
Davis (1993) investigated finite lattices {and their symmetry groups) considering a quotient
group Z? /(NZ ® N2Z ® NsZ). Of course, this group is isomorphic with a direct product
Zy, @ Ly, @ Zy,, but such an approach allows 2 generalization of the Born—von Karmén
conditions to investigations of all possible finite quotient groups 7 /7", where T’ is an
infinite group different from direct products of N;Z groups. The difference between these
two approaches is similar to the difference between the reduced and repeated zone schemes
in the reciprocal lattice considerations. ’

From table 3 one can easily notice that the standard labelling scheme of irreps (A1, etc)
differs from the one obtained when this group is treated as a wreath product C, 2 3. The
‘symmetry’ index—g or u—is replaced by 0+ and 0—, respectively, but the indices ! and
2 describe global properties of an irrep rather than properties of its second (‘permutational’)
part. It is clear that 1 cormresponds to the symmetric irrep, which can be constructed from
two symmetric or two antisymmetric irreps, whereas A; is a product of symmetric and
antisymmetric irreps. The labelling scheme introduced gives at once results of irreps
products, e.g. it is evident that (I}, ® (1%)) ® (I's_ ® (3)} = I'}_ ® (1%) which is not
$0 clear in the notation Az, ® Az, = Ajy.
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